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Key Points:

• A new Dst probability model developed from SoHO images using Convolutional
Neural Networks (CNNs) with a least-squares based ensemble technique is pro-
posed.

• The proposed model can well forecast Dst probability at least 1 day ahead dur-
ing strong storm periods.

• The proposed model can capture the signature of strong storm events from SoHO
images.
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Abstract

We present a new model for the probability that the Disturbance storm time (Dst)
index exceeds -100 nT, with a lead time between 1 and 3 days. Dst provides essential
information about the strength of the ring current around the Earth caused by the pro-
tons and electrons from the solar wind, and it is routinely used as a proxy for geomag-
netic storms. The model is developed using an ensemble of Convolutional Neural Net-
works (CNNs) that are trained using SoHO images (MDI, EIT and LASCO). The re-
lationship between the SoHO images and the solar wind has been investigated by many
researchers, but these studies have not explicitly considered using SoHO images to pre-
dict the Dst index.

This work presents a novel methodology to train the individual models and to learn
the optimal ensemble weights iteratively, by using a customized class-balanced mean square
error (CB-MSE) loss function tied to a least-squares (LS) based ensemble.

The proposed model can predict the probability that Dst < −100nT 24 hours ahead
with a True Skill Statistic (TSS) of 0.62 and Matthews Correlation Coefficient (MCC)
of 0.37. The weighted TSS and MCC from Guastavino et al. (2021) is 0.68 and 0.47, re-
spectively. An additional validation during non-Earth-directed CME periods is also con-
ducted which yields a good TSS and MCC score.

Plain Language Summary

Geomagnetic storms pose one of the most severe space weather risks to our space
borne and ground-based electronic instruments, such as GNSS and radio transmission
systems. Dst is one of the most accurate geomagnetic storm indicators. Hence, those storm
can be predictable if Dst can be forecasted. Currently, the best Dst model can only pre-
dict Dst in several hours. In this study, we present a machine learning based ensemble
method to predict the Dst 1-3 days in advance from solar images.

1 Introduction

Geomagnetic storms pose one of the most severe space weather risks to our space-
borne and ground-based electronic instruments, such as GNSS and radio transmission
systems. A geomagnetic storm can be indicated by several geomagnetic indices such as
Kp, ap, and the Disturbance storm time (Dst) index (Rostoker, 1972). These indices are
related to the perturbation of the geomagnetic field as measured on local regions on Earth
at middle, high, and low latitudes, respectively. Although it is now recognized that a sin-
gle index is not able to capture and define all geospace storms (Borovsky & Shprits, 2017),
they are routinely used by space weather operational agencies as proxies for geomagnetic
activity (see, e.g. https://www.swpc.noaa.gov/products/geospace-geomagnetic-activity-
plot). Here, we focus specifically on Dst, given the large amount of literature devoted
to its prediction, notably using data-driven and machine learning techniques (Camporeale,
2019). Dst is understood to be a proxy for ring current density (Liemohn et al., 2001)and
it is currently defined by using quasi real-time geomagnetic field measurements from four
equatorial ground magnetometer stations: Hermanus, Honolulu, San Juan and Kakioka
(Sugiura & Kamei, 1991).

Most of the current models predict Dst based on solar wind parameters such as
the North-South component of the interplanetary magnetic field (IMF) Bz (Saiz et al.,
2008). Neural networks have been widely used in modeling Dst empirically. Lundstedt
et al. (2002) was one of the first to implement a multi-layer perception (MLP) neural
network based on IMF Bz, solar wind density and velocity, in order to forecast Dst 1-
hr in advance. Saiz et al. (2008); Bala and Reiff (2012); Lazzús et al. (2017) presented
models to forecast Dst up to 6 hours in advance. A Gaussian Process model has been
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introduced by Chandorkar et al. (2017) and Chandorkar and Camporeale (2018) and later
combined with a a long short-term memory (LSTM) architecture in Gruet et al. (2018)
to provide a probabilistic forecast up to 6 hours in advance. An ensemble learning al-
gorithm has been used in Xu et al. (2020). Laperre et al. (2020) evaluated the perfor-
mance of a LSTM model based on a Dynamical Time Warping (DTW) method.

All the empirical models mentioned above are trained from solar wind data which
are measured in quasi real-time by the ACE or DSCOVR satellites orbiting around the
first Lagrangian point (L1), or alternatively using the NASA OMNI database (https://
omniweb.gsfc.nasa.gov/). Hence, in an operational setting, their lead-time would be
limited to only a few-hours ahead.

In this paper, we aim to predict Dst with a longer lead time (in the range of 1 to
3 days ahead) using solar images from the Solar and Heliospheric Observatory (SoHO)
as inputs. SoHO is a joint mission between the National Aeronautics and Space Admin-
istration (NASA) and the European Space Agency (ESA) and was the first space-based
telescope to serve as an early warning system for space weather. Solar images can be ob-
served by a suite of on-board instruments on SoHO (Domingo et al., 1995), including
the Michelson Doppler Imager (Scherrer et al., 1995) (MDI) for the solar photosphere,
the Extreme ultraviolet Imaging Telescope (Delaboudinière et al., 1995) (EIT) for the
stellar atmosphere to low corona, and the Large Angle and Spectrometric Coronagraph
(Brueckner et al., 1995) (LASCO). Although used much less than solar wind data for
forecasting purposes, it is known that a significant correlation exists between EIT and
Dst index. A semi-physical model called ‘Anemomilos’ is then developed based on this
relationship to predict Dst index in 6 days. (Tobiska et al., 2013) This model became
part of the US Space Force HASDM predictions in 2012. Upendran et al. (2020) has pointed
out that the correlations between solar images and solar wind parameters are most sig-
nificant during the fast solar wind.

Obviously, by setting the problem as a 1-to-3 days ahead forecast, we have to ac-
cept that we cannot achieve the accuracy seen in few (1 to 6) hours ahead forecast mod-
els, that currently report Root Mean Square Errors of the order of 10 nT or less. There-
fore, as a first step, we set the problem as a classification task, aiming at forecasting the
probability that Dst exceeds a certain threshold (hereinafter referred to as ‘Dst prob-
ability’). In this study, we focus on strong storms having a Dst threshold of -100 nT,
and aiming at producing a probabilistic forecast 1 day ahead of a given solar image.

In addition, although most operational applications require a deterministic Dst value,
the predicted probabilistic Dst forecast could also be used to improve current space weather
models, for example, for running ensemble simulations of mass density forecasting, which
is one of the top priority for the predictability of low-Earth-orbit (LEO) satellite trajec-
tories (Licata et al., 2020). Dst plays a major role in mass density modeling such as Jacchia-
Bowman2008 (JB2008)(Bowman et al., 2008). Hence, The forecast Dst probability would
be helpful to assess the uncertainty of those models.

We train a machine learning (ML) technique called convolutional neural network
(CNN) to forecast the probability that Dst exceeds the pre-defined -100 nT threshold
from 1 to 3 days in advance (i.e., the prediction is in the form of a time series of prob-
abilities). CNN has been recently used in space weather applications, eg. by Siciliano
et al. (2021); Upendran et al. (2020); Li et al. (2020); Ruwali et al. (2020); Park et al.
(2018). By using the presented technique in an operational setting, a forecaster would
have access to several predictions issued with different lead-times. Hence, we face a clas-
sical problem in ensemble learning, namely how to combine different predictions by ap-
plying different weights to different lead-times. In this work, we restrict to a static weight-
ing scheme (i.e. the weights are learned on a training set and do not change with dif-
ferent inputs or solar wind conditions), opposite to dynamic weights (Polikar, 2012). We
solve the ensemble problem by introducing a new, customized, complementary cumu-
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lative distribution function (CCCDF) based least-squares (LS) method to find the op-
timal weights.

The paper is divided as follows. Section 2 introduces the data used for this study,
the criterion to select storm times and the corresponding time periods covered. Section
3 describes the methodology, including the designed machine learning architecture, the
optimization method, and the performance metrics for assessment. Section 4 presents
the results of the developed model, and emphasizes the probabilistic nature of the fore-
cast. Finally, in Section 5, we draw conclusions and make final remarks about future di-
rections.

2 Data

2.1 Disturbance storm time (Dst) index

The Dst index is available at 1-hour cadence from the NASA OMNI database. Fig.
1 displays the Dst index in the period 1996-2010. The model is trained, validated and
tested on storm events with a Dst peak smaller than -100 nT, shown by orange crosses.
Overall, 51 such storm periods are selected for this study. In order to define a storm pe-
riod, we look for the the nearest positive Dst values immediately before and after each
peak, and then extend the time window by a 24-hour buffer zone to make sure that the
pre-storm period and the recovery phase are fully included. An example is shown in Fig.
2, where the Dst peak is observed on Oct. 23, 1996. The storm period is defined as rang-
ing between Oct. 17, 1996 and Nov. 04, 1996. With this procedure we make sure that
the time intervals are selected in such a way that the negative Dst peaks do not always
occur at the same time within the chosen storm-time window, hence the neural network
does not simply memorize. The average period of selected storm events is approximately
15 days. All selected storms, sorted by peak Dst, are listed in Table. 1.

As mentioned in the Introduction, we would like to solve this classification task by
a regression model. Hence, instead of a binary label set (positive/negative), a customized
complementary cumulative probability distribution function (CCCDF) of Dst is used
as a target for the CNN model. The CCCDF is shown in Fig. 3, and explained briefly
below. A cumulative distribution function (CDF) is defined as the integral of a prob-
ability density function (PDF) from negative infinity to x and the complementary CDF
(CCDF) = 1-CDF or the integral from positive infinity to x. The CDF(x) is the prob-
ability that a random variable has a value less than x. Conversely, the CCDF(x) gives
the probability that the variable under consideration is larger than x. The customized
CCDF (CCCDF) for Dst=-100nT is defined as in Eqn. 1-2. Note that CCCDF(Dst=-
100) =0.5 by construction.

CCCDF (x) =
(CCDF (x)− CCDF (−100))

1− CCDF (−100)
+ 0.5 for x ≤ −100 (1)

CCCDF (x) =
(CCDF (x)− CCDF (−100))

CCDF (−100)
+ 0.5 for x > −100 (2)

2.2 SoHO mission

The two-hourly SoHO data sets used in this work for the period 1996-05-01 to 2011-
04-12 are derived from the following public domain resources: the NASA Solar Data Anal-
ysis Center’s (SDAC) Virtual Solar Observatory (VSO) (https://sdac.virtualsolar
.org/cgi/search) and Stanford University’s Joint Science Operation Center (JSOC)
http://jsoc.stanford.edu/MDI/MDI Magnetograms.html. All SoHO products and their
details are shown in Table 2.
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Table 1: List of selected 51 Storm Events.

No. Start time End time Min. Dst (nT)

1 2001-03-29 03:00:00 2001-04-06 15:00:00 -387
2 2001-11-03 19:00:00 2001-11-17 00:00:00 -292
3 2005-05-13 05:00:00 2005-05-22 04:00:00 -247
4 1999-10-19 23:00:00 1999-11-02 11:00:00 -237
5 2000-08-08 05:00:00 2000-08-21 07:00:00 -234
6 2001-11-22 06:00:00 2001-12-02 14:00:00 -221
7 2000-09-15 19:00:00 2000-09-26 14:00:00 -201
8 2001-10-17 10:00:00 2001-10-27 09:00:00 -187
9 2005-08-22 08:00:00 2005-09-02 03:00:00 -184
10 2002-09-01 23:00:00 2002-09-18 07:00:00 -181
11 1999-09-20 20:00:00 1999-09-28 15:00:00 -173
12 2000-11-02 04:00:00 2000-11-12 06:00:00 -159
13 2001-03-17 11:00:00 2001-03-24 14:00:00 -149
14 2003-08-15 18:00:00 2003-09-02 23:00:00 -148
15 2003-06-14 09:00:00 2003-06-28 12:00:00 -141
16 2000-02-09 07:00:00 2000-02-21 12:00:00 -135
17 2004-01-20 05:00:00 2004-02-01 05:00:00 -130
18 2004-08-28 02:00:00 2004-09-06 01:00:00 -129
19 2000-11-24 22:00:00 2000-12-05 05:00:00 -119
20 2002-05-09 11:00:00 2002-05-20 20:00:00 -110
21 2002-05-21 11:00:00 2002-06-01 20:00:00 -109
22 2002-08-16 22:00:00 2002-08-27 10:00:00 -106
23 2001-08-15 16:00:00 2001-08-21 12:00:00 -105
24 2005-01-14 21:00:00 2005-01-23 17:00:00 -103
25 2002-07-30 23:00:00 2002-08-09 03:00:00 -102
26 2002-03-21 15:00:00 2002-03-30 21:00:00 -100
27 2000-01-20 16:00:00 2000-01-29 06:00:00 -96
28 2005-01-05 14:00:00 2005-01-13 18:00:00 -93
29 2004-02-09 10:00:00 2004-02-23 20:00:00 -93
30 1999-04-14 20:00:00 1999-04-23 08:00:00 -91
31 2000-06-06 13:00:00 2000-06-15 01:00:00 -90
32 2002-01-31 00:00:00 2002-02-06 21:00:00 -86
33 1999-12-02 02:00:00 1999-12-17 07:00:00 -85
34 2003-05-07 08:00:00 2003-05-20 06:00:00 -84
35 2009-07-20 01:00:00 2009-08-01 10:00:00 -83
36 2010-03-29 23:00:00 2010-04-16 16:00:00 -81
37 2005-02-14 12:00:00 2005-02-24 09:00:00 -80
38 2000-01-09 10:00:00 2000-01-19 11:00:00 -80
39 2010-05-26 21:00:00 2010-06-10 15:00:00 -80
40 2004-03-07 13:00:00 2004-03-21 21:00:00 -78
41 2004-07-14 22:00:00 2004-07-22 18:00:00 -76
42 2001-05-05 00:00:00 2001-05-18 18:00:00 -76
43 2000-06-24 02:00:00 2000-07-02 09:00:00 -75
44 2002-12-17 08:00:00 2002-12-24 16:00:00 -75
45 2005-10-29 09:00:00 2005-11-04 18:00:00 -74
46 2003-01-27 13:00:00 2003-02-15 13:00:00 -74
47 2007-03-21 10:00:00 2007-03-27 00:00:00 -72
48 2002-02-26 17:00:00 2002-03-05 01:00:00 -71
49 2010-04-30 11:00:00 2010-05-12 17:00:00 -71
50 1999-10-08 01:00:00 1999-10-22 04:00:00 -67
51 2003-02-24 22:00:00 2003-03-14 15:00:00 -67
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More than 20,000 SOHO images can be provided from three on-board instruments,
including the Michelson Doppler Imager (MDI) for the solar photosphere, the Extreme
ultraviolet Imaging Telescope (EIT) for the stellar atmosphere to low corona, and the
Large Angle and Spectrometric Coronagraph (LASCO) covering the corona from 1.5−
30 Rs. Those data have fully covered Solar Cycle 23 and 24. Among them, MDI, EIT
with a wavelength of 195 (EIT-195) and LASCO-C2 are used as the inputs of this study.

However, the SDAC data is highly heterogeneous. Not only are there intrinsic dif-
ferences among these SoHO products (e.g., individual cadence for each channel shown
in Table 2), but there is also an irregular assortment of image file sizes and processing
levels. All products require calibration before they can be used for the neural networks.
In addition, each channel needs to be synchronized with a fixed cadence (i.e., 2hrs in this
study). An example of the calibrated data are shown in Fig. 4.

A pipeline has been created and published by (Shneider et al., 2021) for automat-
ically downloading, cleaning and synchronizing these original images from SDAC and VSO.
A machine-learning-ready image data set is then provided which is a valuable resource
for the space weather community.

Instrument Detector Observed Region λ(Å) Cadence (min) Date Range

MDI MDI Full Disk 6768 (Ni I) ∼ 96 1996.05.01 - 2011.04.12

EIT EIT Full Disk 171 (Fe IX/X) ∼ 360 1996.01.01 →
EIT EIT Full Disk 195 (Fe XII) ∼ 12 1996.01.01 →
EIT EIT Full Disk 284 (Fe XV) ∼ 360 1996.01.01 →
EIT EIT Full Disk 304 (He II) ∼ 360 1996.01.01 →

LASCO C2 Corona (1.5− 6 Rs) Visible ∼ 20 1995.12.08 →
LASCO C3 Corona (3.5− 30 Rs) Visible ∼ 20 1995.12.08 →

Table 2: Suite of SoHO Instruments utilized. λ(Å) is wavelength measured in angstroms,
and Rs is the Sun’s radius. LASCO C1 (1.1 − 3 Rs) is not included in this work since it
was only operational till Aug. 9, 2000.

3 Methodology

The goal of this study is to estimate the Dst probability 1 to 3 days ahead of the
time when full-disk SoHO images are taken. For the sake of clarity we discuss here the
algorithm for 1-day ahead prediction, with the understanding that all times are corre-
spondingly shifted for 2 and 3 days ahead predictions.

3.1 Customized Class-Balanced Convolutional Neural Networks (CB-
CNN)

Several machine learning approaches can be used for a probabilistic prediction task.
We have compared naive Bayes, multi-layer perception and CNN. Among them, CNN
has yielded the most reliable and robust performance (results are not shown here).

CNN is a commonly used neural network architecture, widely used in computer vi-
sion (Gu et al., 2018), in solar image processing (Illarionov & Tlatov, 2018; Baso & Ramos,
2018; Upendran et al., 2020; Dos Santos et al., 2021), and recently in plasma and space
physics applications (Hu et al., 2020; Siciliano et al., 2021). Hence, in this study, we have
opted to use a customized class-balanced convolutional neural network (CNN). This is
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because of the imbalance between the number of positive samples (Dst <= −100nT )
and the number of negative samples (Dst > −100nT ), which is approximately 10% of
all training samples. As a result of using a class-balanced target, the CB-CNN model
performs better than a vanilla CNN model, when the target Dst is near the classifica-
tion threshold. A brief introduction of the CNN architecture and the optimization meth-
ods used in the training is listed in Table 3.

Parameter Value

input size [3, 256, 256]
output size 12

layers 3
kernel size [3, 5, 5]

padding mode same
activation function [ReLU, ReLU, ReLU]

max epochs 100
optimization AdamW
learning rate 0.0001
regularization Elastic
cost function CB-MSE

Table 3: Parameter selection of CNN and the corresponding optimization method used in
training.

By denoting with T the time at which the input images are taken, a multi-target
CNN model is first trained to predict the Dst probability in the time range [T+26, T+
48], with a time resolution of 2 hours. That is, 12 probability values are output for each
input. This means that, at any given time, we have 12 probabilities that have been pre-
dicted between 26 and 48 hours ahead. Note that, due to the variability of the Sun and
because we are using full disk images, predictions with shorter time lags are not neces-
sarily more accurate than ones with longer time lags. Because we eventually want to merge
those predictions (with different time lags) into a unique, reliable prediction, we do not
use a standard loss function for binary classification (such as, e.g., binary cross-entropy),
but a customized, class-balanced, mean square error.

In our application, a class-balanced loss function developed by Cui et al. (2019) is
used to deal with the large imbalance between positive and negative labels. In addition
to that, we want to penalize more the incorrect predictions that are closes to the deci-
sion boundary CCCDF = 0.5 (corresponding to the threshold Dst = −100). Hence,
a customized weight is designed to artificially increase the cost function for the possi-
bly ambiguous samples with Dst near -100 nT. The cost function is defined as:

Cost Function =

48∑
h=26

wh

(∑nh
pos

i=1 Eh
i (1− β)

1− βnh
pos

+

∑nh
neg

i=1 Eh
i (1− β)

1− βnh
neg

)
(3)

Eh
i = (P̂h

i − Ph
i ) cos ((Ph

i − 0.5)× 0.9× π2
(4)

Where Ph
i is the model prediction for ith sample with a delay hour h (delay hours

h ranging 26h, 28h, . . ., 48h), P̂h
i is the corresponding target, npos and nneg are the num-

ber of positive and negative samples in a batch, respectively, and wh denotes the weight
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associated to each target. The detailed procedure of optimizing these weights will be fur-
ther introduced in Section 3.3. E is a customized square error that penalizes samples whose
Dst is near -100 nT, as shown in Fig. 5. β is a constant term manually set to 0.9999 ac-
cording to Cui et al. (2019).

The multi-target CNN trained using the cost function described above, can then
be used to forecast the Dst probability from 26 to 48 hours ahead, at a 2 hours rate. Hence,
at any given time we have (48 − 26)/2 + 1 = 12 different predictions (issued between
26 and 48 hours prior). A natural question then arises on whether one could combine
these 12 predictions in order to achieve a prediction that is more accurate than any in-
dividual one. In order to to that, we take a weighted average of the 12 predictions, and
we estimate the optimal (static) weights by solving a least squares (LS) problem. The
details of the weight estimate procedure are shown in Fig. 8. Figure 9 shows the learned
12 weights optimized with this procedure, along with their uncertainty (see the leave-
one-out procedure described below).

Finally, we notice that the predicted Dst probabilities might not be well-calibrated
(i.e., statistically consistent with observations) and that the optimal threshold for binary
classification metrics might be different than the standard 50% probability. Hence, the
threshold of probability used for metrics (see Metrics Section) is re-calibrated by using
a receiver operating characteristic (ROC) curve. ROC curve is an important diagnos-
tic for a probabilistic model that can be used to determine an optimal threshold to sep-
arate positives from negatives based on probabilistic predictions. A detailed description
of ROC curve can be found in Camporeale et al. (2020). An example ROC curve for the
developed model with the CNN is shown in Fig. 6. Horizontal and vertical axes denote
false positive rate (FPR) and true positive rate (TPR), respectively. The dashed orange
line shows TPR equals to FPR (i.e., no skill), while the blue line represents the ROC curve,
obtained by defining positives and negatives by progressively changing the probability
threshold from 0% to 100%. The red dot represents the optimal/largest value of True
Skill Statistics, defined as the difference (TPR-FPR).

3.2 Metrics

In order to precisely assess the accuracy of a model, it is important that the per-
formance metrics are computed on a test set independent from the training set (so-called
hold-out data), hence making sure that the machine learning algorithm does actually learn
meaningful patterns and does not merely memorize the training data. A ‘Leave one out’
technique is adopted here. That is a K-fold cross validation taken to its logical extreme,
with K equal to N, the number of selected storm cases. That means that the proposed
model is trained on all the data except for one storm window and a prediction is made
for that left-out storm. The procedure is repeated N times. Finally, the metrics are com-
puted as averages over the N models. In this study, the top 51 storm windows in the pe-
riod 1999-01-01 to 2011-04-10 constitute each a fold. Details of those events can be found
in SI. The probabilistic predictions can be transformed to binary labels upon defining
a probability threshold. In this way we can use standard metrics for binary classifica-
tion such as the True Skill Statistic (TSS) and Matthews Correlation Coefficient (MCC)(Camporeale
et al., 2020):

TSS = TPR− FPR =
TP

TP + FN
− FP

FP + TN
, (5)

MCC =
TP × TN − FP × FN√

(TP + FP )× (FN + TN)× (FP + TN)× (TP + FN)
, (6)

where TP, FP, TN and FN denotes true positive, false positive, true negative and
false negative numbers respectively. The MCC score is a reliable statistical rate that pro-
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duces a high score only if the prediction obtained good results in all of the four confu-
sion matrix categories (TP, FP, TN and FN), proportionally both to the size of positive
elements and the size of negative elements in the data set (Baldi et al., 2000). TSS is
a useful metric that combines both types of information and should be as close as pos-
sible to 1. Those metrics have shown some advantages over the F1 score and accuracy
in binary classification evaluation (Chicco & Jurman, 2020). Moreover, an innovative way
to evaluate the model accuracy has been developed by Guastavino et al. (2021). This
method assign different weights to FPs that anticipate the occurrence of an actual pos-
itive event (i.e. ’almost hit’). The value-weighted MCC and TSS have been proved more
appropriate for decision making processes. Hence, these weighted scores are also consid-
ered to assess the model accuracy.

3.3 Ensemble Method

After the CNN model is developed, twelve probabilities can be predicted from the
model and each SOHO image set. Although each prediction is per se valid, we have ver-
ified that combining those predictions yields a model that outperforms a single individ-
ual prediction. Here, we describe the ensemble method that, for simplicity, has been cho-
sen to be a simple linear combination of the twelve probabilities so that the final prob-
ability is defined as Pens =

∑48
i=26 wipi, with pi the probability of Dst exceeding the

-100 nT threshold at time i. The timeline of predictions is depicted in Fig. 7. Each hor-
izontal bar displays the timeline during an hypothetical event. Yellow blocks denote the
2 hours interval during which SoHO images are taken, and used as inputs to the model.
The green block denotes the 12 Dst probability predictions. From top to bottom, there
are n samples during one event. The time gap between consecutive samples is 2 hours.
All predicted probabilities enclosed by a red frame are considered as one probability clus-
ter (i.e., a 12×1 vector) for a certain time epoch. The totality of clusters are used to
form a design matrix for this event, i.e., a 12× (n−12) matrix. Assuming we have m
events, the whole design matrix has then size 12×

∑m
i (ni − 12). Eqn. 7 is the obser-

vation model of the ensemble method:

L = W · P, (7)

where P is the design matrix as introduced in Fig. 7 (each column of P contains
12 different probabilities collected with different time lags):

P =


p1226h p1326h · · · pn26h
p1128h p1228h · · · pn−1

28h
...

...
. . .

...
p148h p248h · · · pn−11

48h

 (8)

L denotes the ground truth (i.e., the CCCDF of Dst), and W is the sought after
weight vector. W is initially set to a constant vector, and will be optimized by a least-
square (LS) method:

W = [ w26h w28h · · · w48h ] (9)

In this study, we develop a customized Elastic-net-aided LS method to optimize
the weights W , based on the elastic-net regularization scheme proposed by Zou and Hastiea
(Zou & Hastie, 2005). The residuals are calculated as:

V = L− P ·W (10)

The cost function, or so-called normal function in LS, is defined as:
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F = V TQV + r1
∑

W + r2
∑

W 2 (11)

The first term in F is a classic weighted cost function where V T is the transpose
matrix of V. The second and third terms are Elastic net regularization factors that lin-
early combines the L1 and L2 penalties of the lasso and ridge methods. Based on the
experiments on the storms, here we set r1 = 0.05, and r2 = 0.95. Finally, Q denotes
the ‘weight’, i.e., diagonal matrix with positive and negative samples as defined in Eqn.
12.

qpos =
nall
npos

, qneg =
nall
nneg

(12)

The function F reaches a minimum when the partial derivative of F with respect
to W equals zero:

∂F

∂W
= −2V TQP + ~r1 + 2~r2W = 0, (13)

where ~r1 is a 12× 1 vector and ~r2 is a 12× 12 unit vector times scale r2.

or

PTQV =
1

2
~r1 + ~r2W (14)

Multiplying PTQ with Eqn. 10, one has

PTQV = PTQL− PTQP ·W (15)

Setting Eqn. 14 into Eqn. 15, one has

1

2
~r1 + ~r2W = PTQL− PTQP ·W (16)

Finally,

W = (PTQP + ~r2)−1(PTQL− 1

2
~r1) (17)

4 Results

In this section we show the results of our model in terms of the metrics TSS and
MCC scores discussed in Section 3.2. It should be noted that, by using the leave-one-
out technique, all metrics in this section are calculated based on the combination of all
entries in the confusion matrix. The proposed ensemble approach is compared against
three alternative approaches: support vector regression (SVR) which is a non-linear en-
semble method (Awad & Khanna, 2015), a method where ensemble members are sim-
ply averaged (equal weight, denoted as ‘Constant’ in Table 4), and a single individual
prediction 24 hrs ahead (no ensemble, so-called ‘Single’ in Table 4). Table 4 shows the
TSS and MCC for the four methods. One can notice that the LS ensemble method sig-
nificantly outperforms the single individual prediction model. Moreover, although SVR
yields a large TNR, the FPR is also large, resulting in low values for both TSS and MCC.

As anticipated in Section 1, the goal of this work is not just to provide a binary
classification, but rather to estimate the probability of exceeding predefined thresholds.
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Table 4: Accuracy of the proposed ensemble model with LS, SVR and constant weights,
together with single-target CNN model.

Ensemble Method TSS MCC TP FP TN FN

LS 0.62 0.37 57 209 1738 21
SVR 0.15 0.18 13 37 1910 65

Constant 0.32 0.23 31 135 1812 47

Single 0.28 0.17 103 544 2097 111

The LS-ensemble method has been trained and tested for various Dst thresholds (Ta-
ble 5), different forecast duration (see Table 6) and larger time resolution (Table 7). Ta-
ble 5 demonstrates that the model performs best when the Dst threshold is -100 nT. Cor-
responding TSS and MCC are 0.62 and 0.37, respectively. Both TSS and MCC decrease
when the threshold is set to -50 nT. Although TSS performs well with a threshold of -
200 nT, the corresponding MCC decreases significantly because of the imbalanced la-
bels since very few ‘very strong’ storms (≤ -200 nT) occurred during 1999-2009. This
implies that the proposed method may identify strong storms (≤ -100 nT) better than
mild storms (≤ -50 nT). Table 6 shows how the performance of the model gets worse with
a longer lead-time. From Table 7, we can see that the model trained from 2-hrs samples
outperforms the model trained from 6-hrs samples. This is because a 6-hrs samples traninig
set is composed of fewer samples overall. Therefore, the model could be less robust with
a larger cadence. Finally, we show in Table 8 the modified TSS and MCC scores pro-
posed in Guastavino et al. (2021) that further improve the accuracy of the method.

A statistic analysis of weights from all of the 51 sub-models is plotted in Fig. 9.
Green horizontal lines denote the mean weights from all 51 sub-models. Blue bars rep-
resent the uncertainty range between the first and the third quartile of the distributions,
and black dots are distribution outliers. Fig. 9 shows that the predictions at 24-38 de-
lay hours have the largest contributions to the final probability. The weights decrease
with the increase of delay hours. It is interesting that the contribution of predictions dur-
ing 42 to 46 delay hours are essentially negligible. The error bars and presence of out-
liers also imply that the weights vary slightly according to different storms. This may
be improved by having more representative storm events.

Table 5: Accuracy of the developed model with 24 hrs ahead predictions based on differ-
ent Dst threshold, i.e., -50nT, -100nT and -200nT

Dst threshold TSS MCC TP FP TN FN

-50 nT 0.29 0.26 215 350 1254 206
-100 nT 0.62 0.37 57 209 1738 21
-200 nT 0.56 0.14 3 80 1940 2

4.1 Storm Case Study

In this section we would like to investigate several typical storm cases.

The Halloween storm, caused by a CME, from 2003-10-25 to 2003-11-05 is selected
for a case study. This is the biggest storm in the past 20 years. Figure 10 displays the
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Table 6: Accuracy of the developed model with 1, 2 and 3 days ahead, when the Dst
threshold is -100 nT.

Forecast (Days) TSS MCC TP FP TN FN

1 0.62 0.37 57 209 1738 21
2 0.34 0.30 40 93 1807 63
3 0.27 0.17 44 248 1578 65

Table 7: Accuracy of the developed model with different time resolution.

time resolution TSS MCC TP FP TN FN

2 0.62 0.37 57 209 1738 21
6 0.42 0.25 9 47 555 9

Table 8: Weighted metrics of the developed model with different time resolution.

time res wTSS wMCC wTP wFP wTN wFN

2 0.68 0.47 67 133 1407 20
6 0.59 0.42 41 82 510 15

24-hour ahead Dst probabilities of the developed model (green line, left vertical axis)
and the corresponding Dst (blue line, right vertical axis) during the Halloween storm.
Black cross and dotted lines are the threshold of probability and Dst index, respectively.

The predicted probabilities can be converted to a binary format with an optimal
threshold re-calibrated by training samples. This threshold is rescaled back to 0.5 in Fig.
10. Two peaks at the midnight October 29 & 30 can be well captured by these predicted
probabilities. The time shift between the peak of real Dst and the peak of the predicted
probability is no more than 4 hours. This implies that those strong storm can predicted
very well by the proposed model.

Fig. 10 also indicates that the proposed model can forecast well those storms caused
by CME because they stand out very clearly in SoHO images. However, a good portion
of solar CMEs are non-Earth oriented. The ability of this model to identify the geo-effectivenes
(or lack thereof) of non-Earth-directed CMEs is also assessed. Twenty of them occur-
ring in the period 2000-2003 are selected for validation. The TSS and MCC of the pre-
diction based on the developed model during those non-Earth-directed CME periods are
0.94 and 0.46 respectively. The TP, FP, TN and FN values are 14, 50, 709 and 0. An
example is shown in Fig. 11. A strong CME occurred around 2002-07-30, but the cor-
responding Dst did not reach -100 nT. The predicted Dst probability increases but not
as significantly as for the Earth-directed CMEs. This suggests that the proposed model
may be able to distinguish non-Earth-directed CMEs, and assign lower Dst probabil-
ities to them. Similar plots of probabilities for all the other storm events used in this study
are included as supplementary information.

5 Summary & Outlook

We have developed a LS-based class-balanced ensemble CNN model that estimates
the probability of Dst exceeding a given threshold 1 day ahead based on SoHO images.
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51 selected storm events were chosen during a long-span historical data set (∼ 16 years),
between 1996-05-01 and 2011-04-20. The proposed model can predict the probability that
Dst < −100nT 24 hours ahead with a TSS of 0.62 and MCC of 0.37. The weighted TSS
and MCC from Guastavino et al. (2021) are 0.68 and 0.47.

One of the crucial points of this work is that it combines a LS ensemble method
with a CNN algorithm for a probability prediction. A customized class-balanced mean
square error is developed as the cost function of the proposed CNN model. After the CNN
model is developed, a LS method is developed to estimate the weights of the predictions
from the proposed multi-target CNNs. Eventually a final probability value can be cal-
culated by the optimized weights and CNN predictions. Binary classification of each event
is then determined by a threshold re-calibrated on the other 50 storms used for train-
ing.

We have shown that this proposed model provides good skills for predicting Dst
1-day-ahead during strong storm periods. The proposed model can also forecast Dst prob-
ability even within a non-Earth-direct CME period. This model will extend the predic-
tion lead time of most of the current Dst empirical prediction models. The performance
metrics that we have analyzed are the confusion matrix, TSS, MCC, and correspond-
ing weighted scores from (Guastavino et al., 2021). Finally, we have discussed a strong
storm case from 2003-10-25 to 2003-11-05. Dst peaks can be well captured by the de-
veloped model.

A possible weakness of this model is that the weights are static, although the time
lags from different events should not be the same (Chandorkar et al., 2019). As a next
step, we plan to take into account dynamic weights, e.g. by applying an online/dynamic
ensemble method, such as (Monteleoni et al., 2011). Moreover, storms that result from
CMEs or high speed streamers are based on different physical mechanisms. The former
mostly occur during high solar activity period, while the latter are seen more often dur-
ing low solar activity period. Including a solar activity index, such as F10.7 into consid-
eration to first classify those samples in order to train the model more precisely, will be
also experimented in the future.
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Figure 1: Time history of Dst during 1996 to 2010. X axis is date and Y axis is Dst
value. The orange crosses denote peak values smaller than -100 nT, used for defining
storm events considered in this study.

Figure 2: An example of the selection criterion to define the time range for one storm
event. The Dst peak occurs on Oct. 23, 1996. The nearest positive Dst values before
and after the peak occur on Oct. 18 and Nov. 03, respectively. The whole storm range is
defined between Oct. 17, 1996 and Nov. 04, 1996 with a 24-hour buffer zone. The list of
selected storm events can be found in Table. 1.
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Figure 3: CDF, CCDF and customized CCDF of Dst during storm periods. X axis is
Dst index. Blue dots are CDF; Orange dots are CCDF; and green dots are CCCDF in
this study.
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Figure 4: Examples of various SoHO products (a-c). Colors similar to those used on the
NASA SoHO site have been used.
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Figure 5: Contour map of Eqn. 4. Left panel is absolute error between P̂ and P ; middle
panel is the weight in Ei which is the second term in Eqn. 4; and the last panel is final
Ei.
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Figure 6: ROC curves (TP rate vs FP rate). X and Y axes are FP rate and TP rate
respectively. Red dots indicate the optimal points along this given ROC curve.
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Figure 7: Illustration of the ensemble procedure. Horizontal bar displays the timeline
during the whole event. Yellow blocks denote when SoHO images are taken. Green blocks
are the 12 Dst probability predictions as introduced from Sec. 3.1. The weights of those
12 predictions from each sample are consistent. From top to bottom, there are n samples
during this event. The time shift between nearby samples is 2 hours. All predicted proba-
bilities in one red frame is considered as one probability cluster (i.e., a 12 × 1 vector) for a
certain time epoch.
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Figure 8: Flowchart of modeling procedures.
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Figure 9: Boxplot of weights of 12 ensemble predictions. Green lines are median value for
each weight, and black dots are anomalies. The upper and lower boundary of blue lines
are the maximum and minimum. The upper and lower boundary of blue lines are the first
and third quartile within 51 storm events.
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Figure 10: Probabilities generated from the developed model during 2003-10-25 and
2003-11-05, together with the corresponding Dst and the thresholds for both probabilities
and Dst during this storm cases. X axis is Date. Left and right Y axes are probability
(shown by green line) and Dst (shown by blue line) respectively. Cross line is when the
probability equals to 0.5, and dash line is when Dst equals to -100 nT. Corresponding
images are plotted in the bottom panel. From top to bottom, they are for MDI, EIT-195
and LASCO C2.
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Figure 11: Similar to Fig. 10. An example during an non-Earth-direct CME during 2002-
07-31 and 2002-08-02.
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